
Coding interview
● Algorithms and data structures

○ Come up with a way to accomplish the set task
○ Talk about its efficiency and trade-offs
○ Be able to change it as needed as the requirements change

● General coding ability: use a language you know well!
○ Write reasonably well-formatted code, good variable names, etc.
○ I don’t care about minor syntax errors or remembering the exact library APIs

● Be able to talk through the code
○ Suggest test data and step through the algorithm
○ Justify design decisions
○ If you’re stuck, talk it through. I can’t offer hints if I don’t know what you’re thinking.

● Edge conditions and error handling
● Maybe describe some tests if time permits

Design interview
● Thinking about large-scale design, possibly with no code written.

More room to demonstrate your skills and creativity!
● Specific skills:

○ Breaking down problems into solvable parts (vs not subdividing)
○ Identifying & analyzing tradeoffs (vs no estimates & over-engineering)
○ Navigating different levels of abstraction (vs “rat holing”)

● Often underspecified; pulling requirements is crucial
○ “Should I optimize for … ?”
○ “Can I assume the input is … ?”

● Consider pseudocode as communication tool
● At Google, normally one of the five questions is a design question

How do you prep?
● Study an undergrad textbook on data structures and algorithms
● Know the basic data structures, paying particular attention to:

○ How to use them
○ Their runtime and memory efficiency (Big-O notation)
○ How to traverse them (trees, graphs)

● How the work internally (less important, but questions do come up)
● Find tech interview questions online and practice them!
● Get comfortable “writing code” on a whiteboard or piece of paper
● Practice full-scale interviews with a friend

● If you are interested in Google, feel free to contact me:
jakehartman@gmail.com

